Abstract

AbstractThe electrochemical applications of gold span the entire pH spectrum. Recently, gold dissolution in acidic and alkaline media has been studied, but less attention has been given to electrolytes at intermediate pH values. To address this gap, this work uses on‐line electrochemical dissolution inductively coupled plasma mass spectrometry (ICP‐MS) to examine gold dissolution across a pH range of 1 to 12.7 using phosphate buffer solutions. All experimental parameters, except pH, are kept constant, enabling a clear investigation of pH effects on anodic (gold oxidation) and cathodic (gold oxide reduction) dissolution processes. Results show that dissolution amounts are lowest at neutral pH values between 3 and 7, varying with the applied potential and exposure time. Anodic and cathodic dissolution dominate in acidic and alkaline electrolytes, respectively. Depending on the highest applied potentials and time exposure, the main dissolution mechanism shifts at pH=5, 7, and 9. The pH dependence of Au dissolution is proposed to be linked to the nature of gold oxides formed, the kinetics of oxide formation/reduction, gold ion redeposition, and the influence of the oxygen evolution reaction (OER) on dissolution. These results provide fundamental insights into gold dissolution under neutral pH conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.