Abstract

Newcastle disease (ND) caused by infections with virulent strains of Newcastle disease virus (NDV) continues to be a threat for poultry industry worldwide. The prospect of developing a thermostable and effective NDV vaccine is still highly desirable. To investigate the determinants of thermostability in NDV, we generated recombinant NDV strains by exchanging viral hemagglutinin–neuraminidase (HN) gene or by mutating the fusion (F) gene. The results showed that the HN and F protein were both determinants of NDV thermostability. With increased thermostability, the HN protein-chimeric virus showed significantly reduced neuraminidase and hemadsorption activities, but its hemolytic activity was retained. We also found that changing the amino acid in the F protein cleavage sites, affected the thermostability as well as the pathogenicity and fusogenic capacity of the virus. Taken together, our results suggest that HN and F proteins both contribute to the thermostability of NDV, and other viral biological activities change as the thermostability of the virus changes. These findings should be of benefit to the development of a thermostable and efficacious NDV vaccine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call