Abstract

Cholesterol 25-hydroxylase (CH25H) has significant antiviral effects through the production of 25-hydroxycholesterol (25HC). In this study, we investigated the effects of CH25H, its catalytic product 25HC, and its catalytic mutant lacking hydroxylase activity (CH25H-M) on porcine circovirus 3 (PCV3) replication. By transfecting PCV3 persistently infected PK-15 cells with the pCAGGS-CH25H-Flag plasmid, the results demonstrated that overexpression of CH25H significantly inhibited PCV3 Cap protein expression, Cap mRNA levels, and viral titers in a dose-dependent manner. Moreover, its catalytic product 25HC inhibited PCV3 replication in PK-15 cells at concentrations below 10 µM without affecting cell viability. In contrast, knockdown of endogenous CH25H using small interfering RNA (siRNA) enhanced PCV3 replication, further confirming its antiviral role. Interestingly, the CH25H-M mutant also exhibited inhibitory effects on PCV3 replication, although the inhibition was much less effective compared with CH25H. In conclusion, CH25H plays a critical role in regulating PCV3 replication, and its antiviral effect is not entirely dependent on its enzymatic activity. These findings provide new insights into both the enzymatic and non-enzymatic antiviral mechanisms of CH25H and revealed some mechanistic immune evasion for PCV3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.