Abstract

ABSTRACTThe asymmetric induction leading to a one‐handed helix was investigated in the anionic and radical copolymerization of triphenylmethyl methacrylate (TrMA) and (S)‐2‐isopropenyl‐4‐phenyl‐2‐oxazoline ((S)‐IPO), and highly isotactic copolymers with a reasonable optical activity were obtained. In the anionic copolymerization, the optical activity of the obtained copolymers depended on the polarity of solvents, and a highly optically active copolymer was produced in the copolymerization in toluene. The chiral oxazoline monomer functioned not only as a comonomer but also as a chiral ligand to endow the polymer with large negative optical rotation in the copolymerization with TrMA. The copolymers with small positive optical rotation were obtained in THF, indicating that IPO unit may work only as the chiral monomer that dictates the helical sense via copolymerization with TrMA. The isotacticity of the obtained copolymers depended on the contents of TrMA units in the copolymers, but was almost independent of the solvent for copolymerization. In the radical copolymerization, the obtained copolymers exhibited small optical activities. It seemed that the chiral monomer cannot induce one‐handed helical structure of TrMA sequences even if the sequences probably have a high isotacticity. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 441–447

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.