Abstract

A racemic mixture and two chiral monomers of 2-methyl-1-butyl propiolate, i.e., rac1, R1, and S1, were stereoregularly polymerized with a catalyst, [Rh(norbornadiene)Cl]2, in methanol at 40 °C to obtain the corresponding helical racemic and two chiral polymers, Prac1, PR1, and PS1, and a copolymer, Pco. The 1H and 13C NMR spectra of the racemic and chiral polymers differed, although the NMR spectra of their monomers were the same. The structures of the Pco copolymers with different chiral monomer ratios were analyzed using 1D and 2D NMR, optical rotation, circular dichroism (CD), UV–vis, and computational methods to elucidate the stereochemical effect of the chiral monomers together with the polymerization mechanism. The temperature dependence of 1H and 13C NMR spectra in line shape and intensity indicated that the helical main chain undergoes restricted rotation around the ester methylene bonds −O–CH2– through a three-site jump exchange called an accordion-like helix oscillation (HELIOS). The energetical...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call