Abstract
Recent experiments on the coupling of the in-plane motional state of electrons floating on the surface of liquid helium to a microwave resonator have revealed the importance of helium surface fluctuations to the coherence of this motion. Here we investigate these surface fluctuations by studying the resonance properties of a superconducting coplanar waveguide (CPW) resonator filled with superfluid helium, where a significant fraction of the resonator's electromagnetic mode volume is coupled to the surface dynamics of the liquid. We present preliminary results on real-time CPW resonator frequency shifts driven by helium fluctuations, which are quantified via their power spectral density and compared with measurements using a commercial accelerometer. We find that a considerable contribution to the CPW resonator noise originates from the mechanical vibrations of the helium surface generated by the pulse tube (PT) cryocooler on the cryostat on which the experiments were performed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.