Abstract
The influence of amorphous hydrogenated carbon a-C:H coatings on gas permeation through polymer films was investigated. Hydrogenated amorphous carbon (a-C:H) films were deposited, at room temperature, from a CH4/Ar plasma produced by a radio frequency glow discharge system at 13.56 MHz. Polyether–etherketone (PEEK) and polyetherimide foils with different thicknesses were used as substrates. The permeation of He was measured and the reduction of the permeability coefficient is correlated here to the composition and density of the a-C:H films. The density and film structure of the layers were analyzed using x-ray reflectivity and Raman spectroscopy of films deposited onto silicon reference samples. A less pronounced reduction of the permeability coefficients for hard, dense diamond-like layers is reported with respect to those obtained for soft, polymer-like layers on PEEK substrates. Surprisingly, the barrier efficacy of the coating decreases with an increase in a-C:H film density. This unexpected result is attributed to intrinsic stress and the corresponding formation of microcracks. The effect of nitrogen incorporation, which reduces film permeability, is investigated in terms of the stress relaxation mechanism promoted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.