Abstract

Tungsten is a primary material in plasma-facing components (PFCs), but several disadvantages limit its application in fusion reactors. This work examined tungsten–niobium (W–Nb) alloys as potential PFC materials and investigated their response to low-energy helium ion irradiation. W–Nb powders were milled for 25 and 36 h, and the W–Nb samples were exposed to 50 and 80 eV helium ion irradiation with a flux of 1.5 × 1022 ions/m2 s at 1230 °C. The sample with a dense structure and obtained after a 25-h milling exhibited enhanced anti-irradiation performance. Sufficient energy can be provided to promote helium ion migration in the matrix, resulting in the formation of nanotendrils. Furthermore, in W–Nb alloys, the Nb-rich regions are more attractive to helium ions and thus provide protection to the tungsten matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.