Abstract
Numerical analysis provides the design choice and operating window of liquid metal Plasma Facing Components (PFC) concepts. Coupled analysis of boundary plasma together with the surrounding boundary structures is required. To achieve this goal, PPPL is developing a comprehensive multi-physics model for modeling of PFCs in fusion devices. The model includes the fluid-kinetic code SOLPS-ITER and the flow and heat transfer code CFX from ANSYS. SOLPS-ITER was augmented with a liquid metal boundary condition algorithm, allowing direct two-way coupling of the plasma analysis with the two-dimensional analytical slab flow model which includes heat convection in the liquid metal PFC. The target heat flux resulting from this coupled analysis is used as a boundary condition for detailed 3D Computational Fluid Dynamics (CFD) Magneto Hydro Dynamics (MHD) and heat transfer analysis. A new formulation of MHD equations is introduced in the numerical procedure ensuring current conservation of the discretized equations. Results of the 3D analysis are used for final validation of the coupled model. A PFC design where a porous wall is used to stabilize the liquid metal surface, while MHD drive is used to push the liquid metal flow inside the PFC, will be investigated in the regimes where vapor shielding is created for enhanced volumetric plasma heat dissipation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.