Abstract
In this study, the He and Ar isotope compositions were measured for the Fe-Mn polymetallic crusts and nodules from the South China Sea (SCS), using the high temperature bulk melting method and noble gases isotope mass spectrometry. The He and Ar of the SCS crusts/nodules exist mainly in the Fe-Mn mineral crystal lattice and terrigenous clastic mineral particles. The results show that the 3He concentrations and R/RA values of the SCS crusts are generally higher than those of the SCS nodules, while 4He and 40Ar concentrations of the SCS crusts are lower than those of the SCS nodules. Comparison with the Pacific crusts and nodules, the SCS Fe-Mn crusts/nodules have lower 3He concentrations and 3He/4He ratios (R/RA, 0.19 to 1.08) than those of the Pacific Fe-Mn crusts/nodules, while the 40Ar/36Ar ratios of the SCS samples are significantly higher than those of the Pacific counterparts. The relatively low 3He/4He ratios and high 40Ar concentrations in the SCS samples are likely caused by terrigenous detrital input with high radiogenic 4He and 40Ar contents. The SCS crusts and nodules have shorter growth periods, implying that in situ post-formation radiogenic 3He, 4He and 40Ar produced by decay of U, Th and K have no effect on their isotope compositions. Thus, the SCS crusts/nodules inherited the noble gases characteristics of their sources. Helium and Ar isotope compositions in the SCS Fe-Mn crusts and nodules reflect the product of an equilibrium mixture between air-saturated seawater and radiogenic components during their growth, while the partial 3He excess in some SCS samples may represent a little mantle-derived origin. The different He and Ar isotope compositions of the Fe-Mn crusts and nodules between the South China Sea and the Pacific Ocean are due to their different sources and genetic processes. The characteristics of He and Ar isotope compositions in the SCS polymetallic crusts and nodules are similar to the properties of hydrogenetic Fe-Mn oxide/hydroxide precipitates, which reflects mainly the product of an equilibrium mixture between air-saturated seawater and radiogenic components.
Highlights
Noble gases are widely used in the studies of basic properties of geological systems and dynamics mechanism and have a unique advantage in marine science research
The characteristics of He and Ar isotope compositions in the South China Sea (SCS) polymetallic crusts and nodules are similar to the properties of hydrogenetic Fe-Mn oxide/hydroxide precipitates, which reflects mainly the product of an equilibrium mixture between air-saturated seawater and radiogenic components
Studies of marine noble gases are mainly concentrated in solving geochemical problems, such as tracing the excess He in the seawater, which is likely produced by U-Th series radioactive decay in the marine sediments [1,2]
Summary
Noble gases are widely used in the studies of basic properties of geological systems and dynamics mechanism and have a unique advantage in marine science research. Merrihue [15] first recognized that the 3 He/4 He ratios of deep-sea sediments are about two orders of magnitude higher than that of the atmosphere and attributed that to the addition of the cosmic material. Systematic studies of He [16,17,18,19,20,21,22,23], Ne [24,25,26,27] and Ar [28,29,30] isotopes in the deep-sea sediments have been conducted
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have