Abstract

Skyrmions are nanoscopic whirls of spins that reside in chiral magnets. It is only fairly recent that a plethora of applications for these quasiparticles emerges, especially in data storage. On the other hand, spin spirals are the periodic analogs of skyrmions, and are equally imperative in the course of exploration to enhance our understanding of helimagnetism. In this study, a new infrastructure based on the B20 compound, MnSi is propounded as a hosting material for spin spirals; alternating thin layers of CoSi and MnSi in the superlattice form provides a facile way of varying the properties of the spin spirals across a continuum. Using first-principles calculations based on full-potential linearized augmented plane-wave (FLAPW)-based density functional theory (DFT), the spin order of bulk MnSi, MnSi film, and the CoSi/MnSi superlattice is investigated. Spin dispersion plots as a function of propagation vectors show that the spiral size changes in the presence of CoSi – we find that the size of the spiral is reduced in the superlattice with thin CoSi layers (CoSi:MnSi=1:1 thickness ratio), whilst at a larger CoSi:MnSi=2:1 thickness ratio, the material behaves as a ferromagnet. In a similar fashion, the spin moment and orbital occupancy depend significantly on the thickness of the CoSi layers. However, the exchange interaction between Mn atoms appears to be generally impervious to the presence of CoSi. Succinctly, the CoSi/MnSi superlattice could be an excellent functional material in data storage applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.