Abstract

We consider the role of magnetic fields on the broken inversion superconductor CePt3Si. We show that the upper critical field for a field along the c axis exhibits a much weaker paramagnetic effect than for a field applied perpendicular to the c axis. The in-plane paramagnetic effect is strongly reduced by the appearance of helical structure in the order parameter. We find that, to get good agreement between theory and recent experimental measurements of H(c2), this helical structure is required. We propose a Josephson junction experiment that can be used to detect this helical order. In particular, we predict that the Josephson current will exhibit a magnetic interference pattern for a magnetic field applied perpendicular to the junction normal. We also discuss unusual magnetic effects associated with the helical order.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.