Abstract

Supramolecular polymerization using two-dimensional π-conjugated chiral monomers has been mainly demonstrated because the supramolecular polymerization can be controlled by stereocommunication through π-π stacking between the two-dimensional chiral monomers. We herein report supramolecular copolymerization utilizing three-dimensional pentahedrons with twisted helical chirality through different combinations of helical-chiral acidic and basic pillar[5]arenes as comonomers. In this case, helical-sense matching is key to facilitating the supramolecular copolymerization. Based on the unique helical chirality of the three-dimensional pillared structure of the pillar[5]arenes and alternate ion-pairing interactions between acidic and basic groups on their bilateral rims, the homochiral helical-sense matching system forms kinetically stable nanowire-shaped supramolecular copolymers, generating the supramolecular gel in high concentrations. At elevated temperatures, the nanowire structure undergoes a transformation into thermodynamically stable nanoparticles, resulting in a gel-to-sol transition. This process can be hindered by introducing linear guest molecules, which prohibit the unit swing of pillar[5]arenes and stabilize the nanowires and supramolecular gel. By tailoring the enantiomeric ratio (e.r.) values of the chiral combinations, the helical-sense-dependent gel-to-sol transition was realized, specifically by decreasing the e.r. values. Because of helical-sense mismatching, the heterochiral system generates short, branched nanowires and presents as a turbid solution. These distinct differences reveal that the helical-sense matching between three-dimensional chiral pillar[5]arene comonomers is important for supramolecular copolymerization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.