Abstract

Conjugated polymers with a helical structure have been in rapid development in recent years because of their potential applications in chemical and biological sensors. We demonstrate the fabrication and characterization of helical nanofibrils of block copolymer poly(4-iso-cyano-benzoic acid 5-(2-dimethylamino-ethoxy)-2-nitro-benzylester)- b-poly(3-hexylthiophene) (PPI(-DMAENBA)- b-P3HT) via a transfer-etching method. The density and lateral length of nanofibrils can be facilely controlled by regulating the process conditions, which, in turn, directly determine the electronic property. Organic field effect transistors based on helical nanofibrils were successfully fabricated with the highest mobility of 9.1 × 10-3 cm2/(V s)-1, an on/off ratio of 3.4 × 105, and high bias stability. The helical nanofibrils were proved to be beneficial for obtaining a highly sensitive and selective chemical sensor. And, the transistor based on helical nanofibrils exhibits a relative response of 28.6% to 100 ppb ammonia, which is even much higher than the responses to 1 ppm ammonia for homo poly(3-hexylthiophene) nanofibrils (7%) and block copolymer nanofibrils without helical structure (0.9%). The combination of helical structure with nanofibrils may provide a new strategy to fabricate high-performance chemical sensors suitable for use in environmental monitoring, industrial and agricultural production, health care, and foodsafety.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call