Abstract

The control over self-assembly behavior becomes absolutely critical because it is dependent on the orientation and morphology. The motivation is focused on borrowing the help of O-H···O hydrogen bonding interactions to realize the control in chiral self-assembly. A series of perylene bisimide (PBI) dyes 3a-3d bearing chiral amino acid derivatives on the imide N atoms and four phenoxy-type substituents at the bay positions of the perylene core were synthesized. Optical properties and aggregation behavior of PBIs were investigated by absorption, fluorescence, circular dichroism (CD), and (1)H NMR spectroscopy. Except for the chiral ester 3c and achiral 3d, chiral dyes 3a and 3b show bisignated CD signals, indicating that the chiral carboxylic acid-functionalized PBI systems are found to be spontaneously self-assembled into supramolecular helices via intermolecular hydrogen bonding rather than π-π stacking. Furthermore, the chirality-controlled helical superstructures are strongly dependent on several factors, such as solvent polarity, concentration, and temperature. The supramolecular helical chirality can be well-controlled by the chiral amino acid residues in the PBI system; that is, the assembled clockwise (plus, P) or anticlockwise (minus, M) helices can be induced by L- or D-isomers, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.