Abstract

BackgroundMutation of amino acid sequences in a protein may have diverse effects on its structure and function. Point mutations of even a single amino acid residue in the helices of the non-redundant database may lead to sequentially identical peptides which adopt different secondary structures in different proteins. However, various physico-chemical factors which govern the formation of these ambivalent helices generated by point mutations of a sequence are not clearly known.ResultsSequences generated by point mutations of helices are mapped on to their non-helical counterparts in the SCOP database. The results show that short helices are prone to transform into non-helical conformations upon point mutations. Mutation of amino acid residues by helix breakers preferentially yield non-helical conformations, while mutation with residues of intermediate helix propensity display least preferences for non-helical conformations. Differences in the solvent accessibility of the mutating/mutated residues are found to be a major criteria for these sequences to conform to non-helical conformations. Even with minimal differences in the amino acid distributions of the sequences flanking the helical and non-helical conformations, helix-flanking sequences are found be more solvent accessible.ConclusionsAll types of mutations from helical to non-helical conformations are investigated. The primary factors attributing such changes in conformation can be: i) type/propensity of the mutating and mutant residues ii) solvent accessibility of the residue at the mutation site iii) context/environment dependence of the flanking sequences. The results from the present study may be used to design de novo proteins via point mutations.

Highlights

  • IntroductionMutation of amino acid sequences in a protein may have diverse effects on its structure and function

  • Mutation of amino acid sequences in a protein may have diverse effects on its structure and function.Point mutations of even a single amino acid residue in the helices of the non-redundant database may lead to sequentially identical peptides which adopt different secondary structures in different proteins

  • The results show that mutations of helix-forming and helixindifferent residues at solvent accessible sites mostly yields non-helical conformations followed by mutation of residues having intermediate solvent accessibility, while an opposite trend is observed for mutations of helix-breaking residues

Read more

Summary

Introduction

Mutation of amino acid sequences in a protein may have diverse effects on its structure and function. Point mutations of even a single amino acid residue in the helices of the non-redundant database may lead to sequentially identical peptides which adopt different secondary structures in different proteins. Under physiological conditions, folding of proteins to well-defined three dimensional structures is crucial for executing their specific biological functions. To the extent that the folding pattern of proteins dictates function, modifying the structure may entail in either altering or disrupting its function. Point mutations in a protein sequence, which are introduced by single amino acid residue replacements by site-directed mutagenesis, may yield different phenotypes by changing the native structure. The effect of point mutations are important in exploring various functional and structural features viz. Similar conclusions are drawn from the theoretical studies of prion protein [15]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.