Abstract
A closed-loop control of the laser cladding process is desired due to difficulties encountered in depositing a layer with acceptable quality from both geometrical and metallurgical point of views. One of the main parameters to achieve the desired geometry in laser cladding process is the height of the deposited layers. In this paper, a real-time measurement and control of the clad height is presented. Due to complex nature of the process and presence of uncertainties, a robust and adaptive sliding mode control is proposed and implemented to control the clad height. The velocity of the substrate is used as a control input while the molten pool height, which is obtained using a charge-coupled device (CCD) camera and an image processing algorithm is used as a feedback signal. Stability of the controller is proven in the presence of time-varying uncertainties and the performance of the closed-loop system is validated by simulation and experiments. The experimental results are promising and show that the geometrical accuracy of the deposited layers can be improved significantly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.