Abstract

Coleman integration is a way of associating with a closed one-form on a p-adic space a certain locally analytic function, defined up to a constant, whose differential gives back the form. This theory, initially developed by Robert Coleman in the 1980s and later extended by various people including the author, has now found various applications in arithmetic geometry, most notably in the spectacular work of Kim on rational points. In this text we discuss two approaches to Coleman integration, the first is a semi-linear version of Coleman’s original approach, which is better suited for computations. The second is the author’s approach via unipotent isocrystals, with a simplified and essentially self-contained presentation. We also survey many applications of Coleman integration and describe a new theory of integration in families.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.