Abstract

We associate to a scheme X smooth over a p-adic ring a kind of cohomology group H i fp (X,j). For proper X this cohomology has Poincare duality hence Gysin maps and cycle class maps which are reasonably explicit. For zero-cycles we show that the cycle class map is given by Coleman integration. The cohomology theory H fp is therefore interpreted as giving a generalization of Coleman’s theory. We find an embedding H syn 2i (X,i)↪H fp 2i (X,i) where H syn is (rigid) syntomic cohomology. Our main result is an explicit description of the syntomic Abel-Jacobi map in terms of generalized Coleman integration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.