Abstract

Little is known on the classification of Heegaard splittings for hyperbolic 3-manifolds. Although Kobayashi gave a complete classification of Heegaard splittings for the exteriors of 2-bridge knots, our knowledge of other classes is extremely limited. In particular, there are very few hyperbolic manifolds that are known to have a unique minimal genus splitting. Here we demonstrate that an infinite class of hyperbolic knot exteriors, namely exteriors of certain “twisted torus knots” originally studied by Morimoto, Sakuma and Yokota, have a unique minimal genus Heegaard splitting of genus two. We also conjecture that these manifolds possess irreducible yet weakly reducible splittings of genus three. There are no known examples of such Heegaard splittings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.