Abstract

Tissue autotomy is a unique adaptive response to environmental stress, followed by regeneration process compensating for the loss of body parts. The crustaceans present remarkable activity of appendage autotomy and regeneration, however, the molecular mechanism is still unclear. In this study, the Eriocheir sinensis Hedgehog (EsHH) and Smoothened (EsSMO) were identified in the regenerative limbs, and the function of Hedgehog signaling pathway on limb regeneration was evaluated. At the blastema growth stage of limb regeneration, the expression of EsHH and EsSMO was up-regulated in response to limb autotomy stress, and down-regulated at blastema differentiation stage. To clarify the effect of Hedgehog pathway during limb regeneration, the regenerative efficiency was evaluated with Smoothened inhibitor cyclopamine or RNAi (ds-HH) injection. We observed that the regenerative efficiency was significantly repressed with blockage of Hedgehog pathway at both the basal growth stage and the proecdysial growth stage, which was indicated by the delay of wound healing and blastema growth, as well as a decrease in the size of newly formed limbs. In addition, gene expression and BrdU incorporation assay showed that the proliferation and myogenic differentiation of blastema cells were suppressed with either cyclopamine or ds-HH injection. Thus, these results suggest that Hedgehog signaling pathway is essential for the establishment of limb regeneration in E. sinensis through promoting the proliferation and myogenic differentiation of blastema cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call