Abstract
A vector space partition of Fqv is a collection of subspaces such that every non-zero vector is contained in a unique element. We improve a lower bound of Heden, in a subcase, on the number of elements of the smallest occurring dimension in a vector space partition. To this end, we introduce the notion of qr-divisible sets of k-subspaces in Fqv. By geometric arguments we obtain non-existence results for these objects, which then imply the improved result of Heden.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.