Abstract
We describe the foundations of a Hecke theory for the orthogonal group SO+(2,n+2). In particular we consider the Hermitian modular group of degree 2 as a special example of SO+(2,4). As an application we show that the attached Maaß space is invariant under Hecke operators. This implies that the Eisenstein series belongs to the Maaß space. If the underlying lattice is even and unimodular, our approach allows us to reprove the explicit formula of its Fourier coefficients.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have