Abstract

Neurons in the nervous system display a wide variety of plasticity processes. Among them are covariance-based rules and homeostatic plasticity. By themselves, the first ones tend to generate instabilities because of the unbounded potentiation of synapses. The second ones tend to stabilize the system by setting a target for the postsynaptic firing rate. In this work, we analyze the combined effect of these two mechanisms in a simple model of hypercolumn of the visual cortex. We find that the presence of homeostatic plasticity together with nonplastic uniform inhibition stabilizes the effect of Hebbian plasticity. The system can reach nontrivial solutions, where the recurrent intracortical connections are strongly modulated. The modulation is strong enough to generate contrast invariance. Moreover, this state can be reached even beginning from a weakly modulated initial condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.