Abstract

Editorial: Homeostatic and retrograde signaling mechanisms modulating presynaptic function and plasticity.

Highlights

  • Dynamic reorganization of neural circuits can occur through the selective strengthening of synapses between neurons that are coactive in response to the encoded information (Shatz, 1990)

  • Evidence has emerged in recent years that activity within neural circuits can shape the synaptic properties of component neurons in a manner that maintains stable excitatory drive, a process referred to as homeostatic synaptic plasticity (Turrigiano and Nelson, 2000; Pozo and Goda, 2010; Davis, 2013)

  • Potent and adaptive homeostatic mechanisms have been demonstrated in a variety of systems to modulate activity at the level of an individual neuron, synapse, circuit, or entire network, and dysregulation at some or all of these levels may contribute to neuropsychiatric disorders, intellectual disability, and epilepsy (Wondolowski and Dickman, 2013)

Read more

Summary

Introduction

Dynamic reorganization of neural circuits can occur through the selective strengthening of synapses between neurons that are coactive in response to the encoded information (Shatz, 1990). Evidence has emerged in recent years that activity within neural circuits can shape the synaptic properties of component neurons in a manner that maintains stable excitatory drive, a process referred to as homeostatic synaptic plasticity (Turrigiano and Nelson, 2000; Pozo and Goda, 2010; Davis, 2013). Potent and adaptive homeostatic mechanisms have been demonstrated in a variety of systems to modulate activity at the level of an individual neuron, synapse, circuit, or entire network, and dysregulation at some or all of these levels may contribute to neuropsychiatric disorders, intellectual disability, and epilepsy (Wondolowski and Dickman, 2013).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.