Abstract
The LHC constraints on Higgs-portal WIMPs are studied. Scalar, vector and anti-symmetric tensor fields are considered. They are assumed to be heavier than a half of the Higgs boson mass. We investigate 8 TeV LHC results on signatures of the vector boson fusion, mono-jet and associated production of the Z boson, which proceed via virtual exchange of the Higgs boson. We show that the vector boson fusion channel gives the most stringent constraints on Higgs-portal interactions for all the WIMP models investigated here. The upper limits on vector and tensor Higgs-portal couplings can be 0.43 and 0.16 for the WIMP mass of 65 GeV, respectively. However, they are rapidly weakened for heavier WIMP masses, allowing O(1) couplings for masses heavier than ∼100 GeV. Constraints for scalar WIMPs are very weak. Prospects of the 14 TeV LHC are also discussed. We show that the constraints on the tensor and vector couplings would be improved by a factor of ∼1.5–2, depending on the search channels. It would be still challenging to constrain scalar WIMPs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.