Abstract

A search is presented for a Higgs boson that is produced via vector boson fusion and that decays to an undetected particle and an isolated photon. The search is performed by the CMS collaboration at the LHC, using a data set corresponding to an integrated luminosity of 130 fb−1, recorded at a center-of-mass energy of 13 TeV in 2016–2018. No significant excess of events above the expectation from the standard model background is found. The results are interpreted in the context of a theoretical model in which the undetected particle is a massless dark photon. An upper limit is set on the product of the cross section for production via vector boson fusion and the branching fraction for such a Higgs boson decay, as a function of the Higgs boson mass. For a Higgs boson mass of 125 GeV, assuming the standard model production rates, the observed (expected) 95% confidence level upper limit on the branching fraction is 3.5 (2.8)%. This is the first search for such decays in the vector boson fusion channel. Combination with a previous search for Higgs bosons produced in association with a Z boson results in an observed (expected) upper limit on the branching fraction of 2.9 (2.1)% at 95% confidence level.

Highlights

  • Background estimationThere are multiple sources of SM background to the analysis

  • A search is presented for a Higgs boson that is produced via vector boson fusion and that decays to an undetected particle and an isolated photon

  • The search is performed by the CMS collaboration at the LHC, using a data set corresponding to an integrated luminosity of 130 fb−1, recorded at a center-of-mass energy of 13 TeV in 2016–2018

Read more

Summary

The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Forward calorimeters extend the η coverage provided by the barrel and endcap detectors to |η| < 5.0. Muons are detected in gas-ionization chambers embedded in the steel magnetic flux-return yoke outside the solenoid, which cover the region up to |η| < 2.4. The first level (L1), composed of custom hardware processors, uses information from the calorimeters and muon detectors to select events at a rate of around 100 kHz within a fixed time interval of less than 4 μs. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in ref. [23]

Data samples and event reconstruction
Event selection
Background estimation
Signal extraction
Efficiencies and systematic uncertainties
Results
Summary
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call