Abstract

In this paper, we develop a diffusion approximation for the transient distribution of the workload process in a standard single-server queue with a non-stationary Polya arrival process, which is a path-dependent Markov point process. The path-dependent arrival process model is useful because it has the arrival rate depending on the history of the arrival process, thus capturing a self-reinforcing property that one might expect in some applications. The workload approximation is based on heavy-traffic limits for (i) a sequence of Polya processes, in which the limit is a Gaussian–Markov process, and (ii) a sequence of P/GI/1 queues in which the arrival rate function approaches a constant service rate uniformly over compact intervals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.