Abstract
We study a network of parallel single-server queues, where the speeds of the servers are varying over time and governed by a single continuous-time Markov chain. We obtain heavy-traffic limits for the distributions of the joint workload, waiting-time and queue length processes. We do so by using a functional central limit theorem approach, which requires the interchange of steady-state and heavy-traffic limits. The marginals of these limiting distributions are shown to be exponential with rates that can be computed by matrix-analytic methods. Moreover, we show how to numerically compute the joint distributions, by viewing the limit processes as multi-dimensional semi-martingale reflected Brownian motions in the non-negative orthant.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have