Abstract
Among the variety of correlated states exhibited by twisted bilayer graphene, cascades in the spectroscopic properties and in the electronic compressibility occur over larger ranges of energy, twist angle and temperature compared to other effects. This suggests a hierarchy of phenomena. Using a combined dynamical mean-field theory and Hartree calculation, we show that the spectral weight reorganisation associated with the formation of local moments and heavy quasiparticles can explain the cascade of electronic resets without invoking symmetry breaking orders. The phenomena reproduced here include the cascade flow of spectral weight, the oscillations of remote band energies, and the asymmetric jumps of the inverse compressibility. We also predict a strong momentum differentiation in the incoherent spectral weight associated with the fragile topology of twisted bilayer graphene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.