Abstract

Heavy quarks, which are produced at the earliest stage of relativistic heavy-ion collisions, probe the entire history of the quark-gluon plasma that is created in the collision. Initially the plasma is populated with chromodynamic fields which can be treated as classical. We study the transport of heavy quarks across such a system, which is called glasma, using a Fokker-Planck equation where the quarks interact with long wavelength chromodynamic fields. We compute field correlators which are used to calculate the collision terms of the transport equation. Finally, the energy loss and momentum broadening of heavy quarks in the glasma are studied. Both of these quantities are sizable and strongly directionally dependent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.