Abstract

To understand contamination characteristics and identify sources of heavy metals in soil affected by complex mine activities, a detailed survey of soil heavy metals from different land cover types was investigated around the Xikuangshan (XKS) antimony mine in south-central China. Soil samples had average concentrations of Sb, As, Cd, Cr, Hg, Pb, Cu, Zn and Ni exceeding their background level in the Hunan province. Sb, As and Cd were the main pollutants. A total of 86.8% of samples were severely polluted, characterized by the Nemerow's comprehensive index, and 68.4% of samples were of very high potential ecological risk, primarily contributed by Sb, Cd and Hg. Among different land cover patterns, Hg, Pb and Cd concentrations showed a statistically significant difference. The application of Pearson correlation, principal component analysis (PCA) and hierarchical cluster analysis (HCA) combined with spatial interpolation GIS mapping revealed that Ni, Cr and Cu were mainly from natural parent materials, whereas other heavy metals were related to anthropogenic sources. Pb, As and Hg were mainly derived from smelting processes of sulfide minerals in the XKS area. The agricultural practice is the main factor for the accumulation of Cd and Zn, and sphalerite smelting also contributed to high Zn concentrations. Particularly, spatial variation of soil Sb concentrations was affected by multiple factors of complex antimony mine activities related to mining, beneficiation and smelting in the XKS area. These results are useful for the prevention and reduction of heavy metal contamination in soils by various effective measures in typical regions affected by antimony mine activities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call