Abstract

The discovery of ferroelectric hafnium oxide enabled a variety of non-volatile memory devices, like ferroelectric tunnel junctions or field-effect transistors. Reliable application of hafnium oxide based electronics in space or other high-dose environments requires an understanding of how these devices respond to highly ionizing radiation. Here, the effect of 1.6 GeV Au ion irradiation on these devices is explored, revealing a reversible phase transition, as well as a grain fragmentation process. The collected data demonstrate that non-volatile memory devices based on ferroelectric hafnia layers are ideal for applications where excellent radiation hardness is mandatory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call