Abstract

The discovery of ferroelectricity in the fluorite structure based hafnium oxide (HfO2) material sparked major efforts for reviving the ferroelectric field effect transistor (FeFET) memory concept. A Novel metal-ferroelectric-metal-ferroelectric-insulator-semiconductor (MFMFIS) FeFET memory is reported based on dual ferroelectric integration as an MFM and MFIS in a single gate stack using Si-doped Hafnium oxide (HSO) ferroelectric (FE) material. The MFMFIS top and bottom electrode contacts, dual HSO based ferroelectric layers, and tailored MFM to MFIS area ratio (AR-TB) provide a flexible stack structure tuning for improving the FeFET performance. The AR-TB tuning shows a tradeoff between the MFM voltage increase and the weaker FET Si channel inversion, particularly notable in the drain saturation current I D(sat) when the AR-TB ratio decreases. Dual HSO ferroelectric layer integration enables a maximized memory window (MW) and dynamic control of its size by tuning the MFM to MFIS switching contribution through the AR-TB change. The stack structure control via the AR-TB tuning shows further merits in terms of a low voltage switching for a saturated MW size, an extremely linear at wide dynamic range of the current update, as well as high symmetry in the long term synaptic potentiation and depression. The MFMFIS stack reliability is reported in terms of the switching variability, temperature dependence, endurance, and retention. The MFMFIS concept is thoroughly discussed revealing profound insights on the optimal MFMFIS stack structure control for enhancing the FeFET memory performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.