Abstract

The heavy ion radiation response and degradation of SiC junction barrier Schottky (JBS) diodes with different P+ implantation intervals (S) are studied in detail. The experimental results show that the larger the S, the faster the reverse leakage current increases, and the more serious the degradation after the experiment. TCAD simulation shows that the electric field of sensitive points directly affects the degradation rate of devices with different structures. The large transient energy introduced by the heavy ion impact can induce a local temperature increase in the device resulting in lattice damage and the introduction of defects. The reverse leakage current of the degraded device is the same at low voltage as before the experiment, and is gradually dominated by space-charge-limited-conduction (SCLC) as the voltage rises, finally showing ballistic transport characteristics at high voltage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call