Abstract
Competition between stochastic energy gains and collisional energy losses is known to lead to preferential acceleration of heavy ions in flare loops. Ion acceleration in a reconnecting current sheet is shown to mitigate the influence of collisional energy losses on stochastic particle acceleration in impulsive solar flares. This effect decreases the sensitivity of the resulting abundance ratios on initial ion charge states. The resulting abundances are determined by the fact that the energy loss rate falls off rapidly with increasing energy. As an example, the expected Fe/O enhancement ratios are computed and shown to be comparable with those observed with ACE SEPICA in several impulsive flares in 1998. One consequence of the model is that the preferential acceleration of heavy ions can occur only when the plasma gas pressure is large enough, β≈me/mp, which may explain the observed correlation between the heavy ion enrichment and selective 3He acceleration in impulsive flares.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.