Abstract
We study the phase structure of the Witten-Sakai-Sugimoto model in the plane of temperature and baryon chemical potential, including the effect of a nonzero current quark mass. Our study is performed in the decompactified limit of the model, which, at least regarding the chiral phase transition, appears to be closer to real-world QCD than the original version. Following earlier studies, we account for the quark mass in an effective way based on an open Wilson line operator whose expectation value is identified with the chiral condensate. We find that the quark mass stabilizes a configuration with string sources and point out that this phase plays an important role in the phase diagram. Furthermore, we show that the quark mass breaks up the first-order chiral phase transition curve and introduces critical points to the phase diagram. Similarities of the phase structure to other holographic approaches and to lattice simulations of “heavy QCD” are found and discussed. By making holographic QCD more realistic, our results open the door to a better understanding of real-world strongly coupled hot and dense matter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.