Abstract

We consider a system of three parallel queues with Poisson arrivals and exponentially distributed service requirements. The service rate for the heavily loaded queue depends on which of the two underloaded queues are empty. We derive the lowest-order asymptotic approximation to the joint stationary distribution of the queue lengths, in terms of a small parameter measuring the closeness of the heavily loaded queue to instability. To this order the queue lengths are independent, and the underloaded queues and the heavily loaded queue have geometrically and, after suitable scaling, exponentially distributed lengths, respectively. The expression for the exponential decay rate for the heavily loaded queue involves the solution to an inhomogeneous linear functional equation. Explicit results are obtained for this decay rate when the two underloaded queues have vastly different arrival and service rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.