Abstract

Although recommendations for effective heat acclimation (HA) strategies for many circumstances exist, best-practice HA protocols specific to elite female team-sport athletes are yet to be established. Therefore, the authors aimed to investigate the effectiveness and retention of a passive HA protocol integrated in a female Olympic rugby sevens team training program. Twelve elite female rugby sevens athletes undertook 10 days of passive HA across 2 training weeks. Tympanic temperature (TTymp), sweat loss, heart rate, and repeated 6-second cycling sprint performance were assessed using a sport-specific heat stress test Pre-HA, after 3days (Mid-HA), after 10days (Post-HA), and 15 days post-HA (Decay). Compared with Pre-HA, submaximal TTymp was lower Mid-HA and Post-HA (both by -0.2 [0.7] °C; d ≥ 0.71), while resting TTymp was lower Post-HA (by -0.3 [0.2] °C; d = 0.81). There were no differences in TTymp at Decay compared with Pre-HA, nor were there any differences in heart rate or sweat loss at any time points. Mean peak 6-second power output improved Mid-HA and Post-HA (76 [36]W; 75 [34]W, respectively; d ≥ 0.45) compared with Pre-HA. The observed performance improvement persisted at Decay by 65 (45) W (d = 0.41). Ten days of passive HA can elicit some thermoregulatory and performance benefits when integrated into a training program in elite female team-sport athletes. However, such a protocol does not provide a sufficient thermal impulse for thermoregulatory adaptations to be retained after 15 days with no further heat stimulus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call