Abstract
The fast ignitor is a modern approach to laser fusion that uses a short-pulse laser to initiate thermonuclear burn. In its simplest form the laser launches relativistic electrons that carry its energy to a precompressed fusion target. Cones have been used to give the light access to the dense target core through the low-density ablative cloud surrounding it. Here the ANTHEM implicit hybrid simulation model shows that the peak ion temperatures measured in recent cone target experiments arose chiefly from return current joule heating, mildly supplemented by relativistic electron drag. Magnetic fields augment this heating only slightly, but capture hot electrons near the cone surface and force the hot electron stream into filaments.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have