Abstract

Abstract Measurement of the levels of organic maturation below and within shear zones of thrust faults in the Rocky Mountains has revealed no general thermal metamorphism that can be attributed to faulting, with the exception of very localized areas. With few exceptions the vitrinite reflectance values obtained are in the range expected if the maximum level of organic maturation was produced as a result of increasing temperature during progressive burial accompanying sedimentation. Only at Marias Pass evidence has been found to suggest additional maturation as a result of post-orogenic burial below the thrust sheets. Anomalously high vitrinite reflectances obtained from the Lewis thrust, McConnell thrust, Coleman thrust and two unnamed thrusts, are restricted to very narrow films immediatly adjacent to, or within the shear zone which, considering any reasonable thermal conductivity, indicates elevated temperatures were very short lived. The anomalously high vitrinite reflectances within these films, when compared to laboratory heated coals, suggest temperatures in the order of 350°-650°C were locally generated during faulting. Such high temperatures are considered to have been generated during stick-slip faulting at macro-asperities or at ramps on the fault plane where local, and possibly transient, high frictional stresses existed. The absence of evidence for extensive frictional heating supports previous arguments that stable-sliding and/or low frictional stress must exist during thrusting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call