Abstract
We study the dynamics and stability in a strongly interacting resonantly driven two-band model. Using exact numerical simulations, we find a stable regime at large driving frequencies where the time evolution is governed by a local Floquet Hamiltonian that is approximately conserved out to very long times. For slow driving, on the other hand, the system becomes unstable and heats up to infinite temperature. While thermalization is relatively fast in these two regimes (but to different "temperatures"), in the crossover between them we find slow nonthermalizing time evolution: temporal fluctuations become strong and temporal correlations long lived. Microscopically, we trace back the origin of this nonthermalizing time evolution to the properties of rare Floquet many-body resonances, whose proliferation at lower driving frequency removes the approximate energy conservation, and thus produces thermalization to infinite temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.