Abstract

The effect of heat treatment on dried fruiting bodies of Reishi medicinal mushroom (Ganoderma lingzhi) is investigated. Control and samples treated for 20 min at temperatures of 70, 120, 150 and 180 °C were subjected for their free radical scavenging capacity, different glucans and total phenolic content determination. The growth rate of Escherichia coli and Lactobacillus casei supplemented with control and heat-treated samples is also investigated. The roasted mushroom samples at 150 °C and 180 °C showed the highest level of β-glucan (37.82%) and free radical scavenging capacity on 2,2-diphenyl-1-picrylhidrazyl (DPPH•) and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS•+). The content of total phenolics (TPC) was also influenced by heat treatment and significantly higher TPC values were recorded in samples treated at 120 °C and 150 °C. The presence of reducing sugars was only detected after heat treatment at 150 °C (0.23%) and at 180 °C (0.57%). The heat treatments at 120, 150 and 180 °C, significantly attenuated the number of colony-forming units (CFU) of pathogenic E. coli, in a linear relationship with an elevated temperature. The supplementation of heat-treated Reishi mushroom at 120 °C resulted in the highest growth rate of probiotic L. casei. The obtained results in this study revealed the significant effect of short-term heat treatment by enhancing the antioxidant capacity, β-glucan solubility and prebiotic property of the dried basidiocarp of Reishi mushroom.

Highlights

  • Heat treatment of food has been extensively utilized to destroy microorganisms and stop enzyme reactions

  • Control and samples treated for 20 min at temperatures of 70, 120, 150 and 180 ◦C were subjected for their free radical scavenging capacity, different glucans and total phenolic content determination

  • Based on the abovementioned precedents, the objective of this study is to investigate the changes in the content of the phenolic compounds, antioxidant activity and β-glucan extractability of thermally processed Reishi mushroom fruiting body and to evaluate the prebiotic effect of the obtained samples on Lactobacillus casei growth

Read more

Summary

Introduction

Heat treatment of food has been extensively utilized to destroy microorganisms and stop enzyme reactions. Due to the woody fruiting body, and the characteristic bitter taste of many Ganoderma species, they are classified as nonedible mushrooms [7], but the presence of several health-promoting and biologically active molecules in Ganoderma species justified well its application in functional foods and supplements [8,9] Several bioactive molecules such as polysaccharides (mainly β-glucans), terpenoids, phenolic compounds, steroids, saturated, monounsaturated and polyunsaturated fatty acids, vitamins (B1, B2, B6), proteins and minerals with established health benefits have been reported from G. lingzhi [10,11,12]. Based on the abovementioned precedents, the objective of this study is to investigate the changes in the content of the phenolic compounds, antioxidant activity and β-glucan extractability of thermally processed Reishi mushroom fruiting body and to evaluate the prebiotic effect of the obtained samples on Lactobacillus casei growth

Materials and Instruments
DNA Molecular Marker and Identification of Reishi Mushroom
Heat Treatment and Extraction
Measurement of α-glucan and Reducing Sugars
Measurement of Total and β-glucan Content
Bacterial Cell Culture and Growth Rate Determination
Statistics
Principal Component Analysis
Findings
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call