Abstract

The purpose of this study is to analyze the heat transport mechanism of femtosecond laser ablation. Under the condition that laser pulse duration is on the order of femtoseconds, a thermal nonequilibrium state between an electron and atom exists and must be taken into account. In order to describe physical phenomena such as heat transport under a nonequilibrium state, a new method, modified molecular dynamics in which molecular dynamics (MD) couples with the two-temperature model (TTM) in a particle-based method, is proposed. In this method, MD simulates the motion of an atom and TTM simulates both electron heat conduction and energy exchange through electron-atom interactions. This approach yields the use of laser intensity as a parameter. For nonequilibrium heat transport, electron heat conduction transports most of the absorbed laser energy and becomes the dominant heat transport mechanism. At thermal equilibrium, above the ablation threshold fluence, electron heat conduction and thermal waves are dominant, while below the ablation threshold fluence, only electron heat conduction is dominant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.