Abstract

The phenomena of femtosecond (fs) laser ablation, such as heat transfer mechanism and shock wave propagation, are investigated by using modified molecular dynamics (MMD). In MMD, conventional molecular dynamics and the two-temperature model, which can describe both electron heat conduction and thermal non-equilibrium state between electron and atom, are coupled by employing the relationship between atom kinetic energy and lattice temperature. For TTM, the heat capacity and thermal conductivity of electrons are dependent on atom and electron temperatures. Two boundary conditions are prepared in order to investigate the effect. In case A, a heat bath is expanded to macro-scale by using a finite difference method whose governing equation is a two-temperature model. In case B, a normal heat bath is set at the bottom of the MD region, resulting in relaxation time with a reasonable value and speed of thermal shock wave equal to elastic wave. Finally, we conclude that the dominant heat transport mechanism is electron heat conduction within several picoseconds, after which thermal shock wave and ordinary heat conduction becomes dominant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.