Abstract

Over a range of 70 < Re a < 9,600, 7 < Pr a < 130, 0 < β < 0.12, and 0.7 < n < 1, circumferential wall temperatures for air–water and air–aqueous polymer (viscoelastic) solution flows over a horizontal cylinder were measured experimentally. The 2.5-cm-diameter and 7.5-cm-long cylinder was heated by passing direct electric current through it. The peripherally averaged heat transfer coefficient for relatively dilute viscoelastic–air solutions, at any fixed flow rate of liquid phase, increases with β. Such increase is more pronounced at lower flow rates of liquid phase. For relatively more elastic solutions, the two-phase heat transfer decreases with increasing β. Such reduction is more pronounced at higher flow rates of liquid phase. A new correlation is proposed for predicting the Nusselt number for air–viscoelastic fluid flows over a heated cylinder in cross flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call