Abstract

Phase change materials (PCM) are applied worldwide as a thermal energy storage technology to reduce energy demands in buildings and solve environmental contamination issues. Form-stable phase change materials (FSPCM), as one branch of PCMs, can be improved by embedding them with thermosyphon, resulting in a better thermal performance. In this paper, a novel thermoplastic elastomer-based FSPCM was developed and tested. A device integrating FSPCM with thermosyphon was created, and the heat transfer mechanism of the unit was studied. The numerical model was established, and experiments were conducted accordingly. The average relative error between the experimental data and the model predictions was <3 %. Furthermore, a parameter study was conducted to investigate the effects of several essential factors. As a result, the evaporator length and PCM thermal conductivity were found to significantly influence the unit's heat transfer rate and overall thermal performance. However, the impact of the latent heat of the FSPCM on the heat transfer rate was negligible, for which it takes 1170 s, 1230 s, and 1394 s to finish changing phase with 136 kJ/kg, 160 kJ/kg, and 200 kJ/kg, respectively. This paper provides insights on the performance of thermosyphon integrated form-stable phase change materials and discusses its relevance for thermal energy storage applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call