Abstract
Spent ion exchange resin (SIER) is a kind of solid waste which derived from water treatment process in iron and steel industry. Utilization of SIER as a replacement of fuel in sintering process is a promising method of SIER treatment. In order to investigate the feasibility of this method, heat transfer effects of SIER in iron ore sintering process were studied in this paper via numerical simulation. A 3D unsteady numerical reference model was developed on the basis of the porous media model and local non-equilibrium thermodynamics model and verified by the data form measurement. Heat transfer effects of different SIER mass fractions (0–8%) in sintering material during the sintering process were studied on the numerical model established in this paper. The results showed that with the increasing mass fraction of SIER, the maximum combustion zone thickness and flame front speed are both increased, the heating-up point, the moment when solid temperature reached the top and the maximum temperatures were all became earlier in different location of sintering bed. When SIER content is 8%, the maximum sintering temperature exceeds the maximum limit of best sintering temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.