Abstract

This work supports new gas turbine designs for improved performance by evaluating endwall heat transfer rates in a cascade that is representative of a first-stage stator passage and incorporates endwall assembly features and leakage. Assembly features, such as gaps in the endwall and misalignment of those gaps, disrupt the endwall boundary layer, typically leading to enhanced heat transfer rates. Leakage flows through such gaps within the passage can also affect endwall boundary layers and may induce additional secondary flows and vortex structures in the passage near the endwall. The present paper documents leakage flow and misalignment effects on the endwall heat transfer coefficients within a passage which has one axially contoured and one straight endwall. In particular, features associated with the combustor-to-turbine transition piece and the assembly joint on the vane platform are addressed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.