Abstract
This work supports new gas turbine designs for improved performance by evaluating sealing flow effects in a cascade representative of a contoured first stage stator passage. Contouring accelerates the flow, reducing the thickness of the endwall inlet boundary layer to the turbine stage and reducing the strength of secondary flows within the passage. Injected flows, used to seal gaps and cool surfaces, may affect endwall boundary layers, increase secondary flows and possibly create additional vortex structures in the passage. The present paper documents injected flow effects on the endwall heat transfer within a passage with one contoured and one straight endwall. The paper discusses heat transfer distributions measured with different leakage flow rates. In particular, leakage is from the gap between the combustor and turbine sections and from the gap at the assembly joint on the vane platform between two vanes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.